[沪科版]八年级上第13章《三角形中的边角关系、命题与证明》单元测试及答案解析_中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」




主页 > 中学 > 数学 > 正文

[沪科版]八年级上第13章《三角形中的边角关系、命题与证明》单元测试及答案解析

中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」来源: https://www.gxfz.org 2019-12-13 16:43数学 319 ℃
九年级数学《命题与证明》单元测验
第13章 三角形中的边角关系、命题与证明

一、选择题
1.下列命题是真命题的是(  )
A.对角线互相平分的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直的四边形是正方形
2.下列命题中,真命题的个数有(  )
①对角线互相平分的四边形是平行四边形;
②两组对角分别相等的四边形是平行四边形;
③一组对边平行,另一组对边相等的四边形是平行四边形.
A.3个    B.2个    C.1个    D.0个
3.下列命题正确的是(  )
A.一组对边相等,另一组对边平行的四边形是平行四边形
B.对角线相互垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线相互垂直平分且相等的四边形是正方形
4.下列说法不正确的是(  )
A.圆锥的俯视图是圆
B.对角线互相垂直平分的四边形是菱形
C.任意一个等腰三角形是钝角三角形
D.周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大
5.下列命题:
①平行四边形的对边相等;
②对角线相等的四边形是矩形;
③正方形既是轴对称图形,又是中心对称图形;
④一条对角线平分一组对角的平行四边形是菱形.
其中真命题的个数是(  )
A.1    B.2    C.3    D.4
6.下列命题中错误的是(  )
A.平行四边形的对角线互相平分
B.菱形的对角线互相垂直
C.同旁内角互补
D.矩形的对角线相等
7.下列命题中,为真命题的是(  )
A.六边形的内角和为360度    B.多边形的外角和与边数有关
C.矩形的对角线互相垂直    D.三角形两边的和大于第三边
8.下列命题中,属于真命题的是(  )
A.各边相等的多边形是正多边形
B.矩形的对角线互相垂直
C.三角形的中位线把三角形分成面积相等的两部分
D.对顶角相等
9.已知下列命题:
①在Rt△ABC中,∠C=90°,若∠A>∠B,则sinA>sinB;
②四条线段a,b,c,d中,若=,则ad=bc;
③若a>b,则a(m2+1)>b(m2+1);
④若|﹣x|=﹣x,则x≥0.
其中原命题与逆命题均为真命题的是(  )
A.①②③    B.①②④    C.①③④    D.②③④
10.下列命题中,属于真命题的是(  )
A.三点确定一个圆    B.圆内接四边形对角互余
C.若a2=b2,则a=b    D.若=,则a=b
11.下列说法正确的是(  )
A.面积相等的两个三角形全等
B.矩形的四条边一定相等
C.一个图形和它旋转后所得图形的对应线段相等
D.随机投掷一枚质地均匀的硬币,落地后一定是正面朝上
12.命题“关于x的一元二次方程x2+bx+1=0,必有实数解.”是假命题.则在下列选项中,可以作为反例的是(  )
A.b=﹣3    B.b=﹣2    C.b=﹣1    D.b=2
13.下列四个命题中,真命题是(  )
A.“任意四边形内角和为360°”是不可能事件
B.“湘潭市明天会下雨”是必然事件
C.“预计本题的正确率是95%”表示100位考生中一定有95人做对
D.抛掷一枚质地均匀的硬币,正面朝上的概率是
14.下列命题正确的是(  )
A.对角线互相垂直的四边形是菱形
B.一组对边相等,另一组对边平行的四边形是平行四边形
C.对角线相等的四边形是矩形
D.对角线互相垂直平分且相等的四边形是正方形
15.下列命题正确的是(  )
A.矩形的对角线互相垂直
B.两边和一角对应相等的两个三角形全等
C.分式方程+1=可化为一元一次方程x﹣2+(2x﹣1)=﹣1.5
D.多项式t2﹣16+3t因式分解为(t+4)(t﹣4)+3t
16.下列命题中,是假命题的是(  )
A.对顶角相等
B.同旁内角互补
C.两点确定一条直线
D.角平分线上的点到这个角的两边的距离相等
17.下列命题中是真命题的是(  )
A.确定性事件发生的概率为1
B.平分弦的直径垂直于弦
C.正多边形都是轴对称图形
D.两边及其一边的对角对应相等的两个三角形全等
18.下列给出5个命题:
①对角线互相垂直且相等的四边形是正方形
②六边形的内角和等于720°
③相等的圆心角所对的弧相等
④顺次连接菱形各边中点所得的四边形是矩形
⑤三角形的内心到三角形三个顶点的距离相等.
其中正确命题的个数是(  )
A.2个    B.3个    C.4个    D.5个
19.下列命题是真命题的是(  )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的平行四边形是矩形
C.四条边相等的四边形是菱形
D.正方形是轴对称图形,但不是中心对称图形
20.下列命题错误的是(  )
A.对角线互相垂直平分的四边形是菱形
B.平行四边形的对角线互相平分
C.矩形的对角线相等
D.对角线相等的四边形是矩形
21.下列命题中的真命题是(  )
A.两边和一角分别相等的两个三角形全等
B.相似三角形的面积比等于相似比
C.正方形不是中心对称图形
D.圆内接四边形的对角互补
22.下列命题是假命题的是(  )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直的四边形是正方形
23.下列命题中,真命题的个数是(  )
①若﹣1<x<﹣,则﹣2;
②若﹣1≤x≤2,则1≤x2≤4
③凸多边形的外角和为360°;
④三角形中,若∠A+∠B=90°,则sinA=cosB.
A.4    B.3    C.2    D.1
24.在平面直角坐标系中,任意两点A(x1,y1),B(x2,y2),规定运算:
①A⊕B=(x1+x2,y1+y2);②A⊗B=x1x2+y1y2;③当x1=x2且y1=y2时,A=B,有下列四个命题:

(1)若A(1,2),B(2,﹣1),则A⊕B=(3,1),A⊗B=0;

(2)若A⊕B=B⊕C,则A=C;

(3)若A⊗B=B⊗C,则A=C;

(4)对任意点A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立,其中正确命题的个数为(  )
A.1个    B.2个    C.3个    D.4个
25.下列说法中,正确的是(  )
A.三点确定一个圆
B.一组对边平行,另一组对边相等的四边形是平行四边形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分且相等的四边形是正方形
26.下列命题的逆命题一定成立的是(  )
①对顶角相等;
②同位角相等,两直线平行;
③若a=b,则|a|=|b|;
④若x=3,则x2﹣3x=0.
A.①②③    B.①④    C.②④    D.②

二、填空题
27.下列命题:
①对角线互相垂直的四边形是菱形;
②点G是△ABC的重心,若中线AD=6,则AG=3;
③若直线y=kx+b经过第一、二、四象限,则k<0,b>0;
④定义新运算:a*b=2a﹣b2,若(2x)*(x﹣3)=0,则x=1或9;
⑤抛物线y=﹣2x2+4x+3的顶点坐标是(1,1).
其中是真命题的有  (只填序号)
28.以下四个命题:
①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补;
②边数相等的两个正多边形一定相似;
③等腰三角形ABC中,D是底边BC上一点,E是一腰AC上的一点,若∠BAD=60°且AD=AE,则∠EDC=30°;
④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.
其中正确命题的序号为  .
29.命题“全等三角形的面积相等”的逆命题是  命题.(填入“真”或“假”)
30.命题“对角线相等的四边形是矩形”是  命题(填“真”或“假”).

第13章 三角形中的边角关系、命题与证明
参考答案与试题解析

一、选择题
1.下列命题是真命题的是(  )
A.对角线互相平分的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直的四边形是正方形
【考点】命题与定理.
【专题】计算题.
【分析】根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.
【解答】解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;
B、对角线相等的平行四边形是矩形,所以B选项为假命题;
C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;
D、对角线互相垂直的矩形是正方形,所以D选项为假命题.
故选A.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.

2.下列命题中,真命题的个数有(  )
①对角线互相平分的四边形是平行四边形;
②两组对角分别相等的四边形是平行四边形;
③一组对边平行,另一组对边相等的四边形是平行四边形.
A.3个    B.2个    C.1个    D.0个
【考点】命题与定理;平行四边形的判定.
【分析】分别利用平行四边形的判定方法:
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对角分别相等的四边形是平行四边形,进而得出即可.
【解答】解:①对角线互相平分的四边形是平行四边形,正确,符合题意;
②两组对角分别相等的四边形是平行四边形,正确,符合题意;
③一组对边平行,另一组对边相等的四边形是平行四边形,说法错误,例如等腰梯形,也符合一组对边平行,另一组对边相等.
故选:B.
【点评】此题主要考查了命题与定理,正确把握相关定理是解题关键.

3.下列命题正确的是(  )
A.一组对边相等,另一组对边平行的四边形是平行四边形
B.对角线相互垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线相互垂直平分且相等的四边形是正方形
【考点】命题与定理.
【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.
【解答】解:A、一组对边相等,另一组对边平行的四边形是平行四边形也可能是等腰梯形,此选项错误;
B、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误;
C、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误;
D、对角线相互垂直平分且相等的四边形是正方形,此选项正确;
故选D.
【点评】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.。

Tags:

本文来自网友上传,不代表本网站立场,转载请注明出处:https://www.gxfz.org/186299.html
  • 站长推荐
热门标签