主页 > 中学 > 数学 > 正文
数学九年级上册《第四章图形相似》单元测试(含答案)
中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」来源: https://www.gxfz.org 2019-12-13 16:46数学 876 ℃
九年级数学(上)单元测试卷4
数学九年级上册《第四章图形相似》单元测试
一.选择题(共12小题)
1.若,则的值为( )
A.1 B. C. D.
2.若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF的面积比为( )
A.3:2 B.2:3 C.4:9 D.9:16
3.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为( )
A.90m B.60m C.45m D.30m
4.如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为( )
A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,﹣4)
C.(2,﹣1) D.(8,﹣4)
5.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于( )
A. B. C. D.
6.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=( )
A. B.2 C. D.
7.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于( )
A.2:5 B.3:5 C.2:3 D.5:7
8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为( )
A.1:3 B.1:5 C.1:6 D.1:11
9.如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B作BE⊥AD交AD的延长线于E.若AC=6,BC=8,则的最大值为( )
A. B. C. D.
10.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于( )
A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10
11.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何。( )
A.10 B.11 C. D.
12.如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF;③;④.其中正确的结论的个数是( )
A.1 B.2 C.3 D.4
二.填空题(共5小题)
13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为 .
14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF= .
15.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形AnBnDnCn的边长是 .
16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP= .
17.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是 .
三.解答题(共6小题)
18.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.
(1)求证:△ABD∽△CBA;
(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.
19.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
20.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
21.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=4,AD=,AE=3,求AF的长.
22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为
2:1,点C2的坐标是 .
23.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).
(1)当t=1时,KE= ,EN= ;
(2)当t为何值时,△APM的面积与△MNE的面积相等。
(3)当点K到达点N时,求出t的值;
(4)当t为何值时,△PKB是直角三角形。
参考答案
一.选择题
1.C.
2.C.
3.B.
4.A.
5.B.
6.A.
7.A.
8.C.
9.B
10.D.
11.D.
12.B.
二.填空题
13.]4.
14.7.5.
15.].
16.3.
17.36.
三.解答题
18.
(1)证明:∵AB=2,BC=4,BD=1,
∴==,
=,
∴=,
∵∠ABD=∠CBA,
∴△ABD∽△CBA;
(2)解:∵DE∥AB,
∴△CDE∽△CBA,
∴△ABD∽△CDE,
∴DE=1.5.
19.
(1)证明:∵ABCD为正方形,
∴AD=AB=DC=BC,∠A=∠D=90°,
∵AE=ED,
∴,
∵DF=DC,
∴,
∴,
∴△ABE∽△DEF;
(2)解:∵ABCD为正方形,
∴ED∥BG,
∴,
又∵DF=DC,正方形的边长为4,
∴ED=2,CG=6,
∴BG=BC+CG=10.
20.
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=90°,AD∥BC,
∴∠AMB=∠EAF,
又∵EF⊥AM,
∴∠AFE=90°,
∴∠B=∠AFE,
∴△ABM∽△EFA;
(2)∵∠B=90°,AB=12,BM=5,
∴AM==13,AD=12,
∵F是AM的中点,
∴AF=AM=6.5,
∵△ABM∽△EFA,
∴,即,
∴AE=16.9,
∴DE=AE﹣AD=4.9.
21.解:
(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠B+∠C=180°,∠ADF=∠DEC,
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C,
∴△ADF∽△DEC;
(2)∵AE⊥BC,AD=3,AE=3,
∴在Rt△DAE中,DE===6,
由
(1)知△ADF∽△DEC,得=,
∴AF===2.
22.解:
(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);
(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为
2:1,点C2的坐标是(1,0),
故答案为:
(1)(2,﹣2);
(2)(1,0)
23.解:
(1)当t=1时,根据题意得,AP=1,PK=1,
∵PE=2,
∴KE=2﹣1=1,
∵四边形ABCD和PEFG都是矩形,
∴△APM∽△ABC,△APM∽△NEM,
∴=, =,
∴MP=,ME=,
∴NE=;
故答案为:1;;
(2)由
(1)并结合题意可得,
AP=t,PM=t,ME=2﹣t,NE=﹣t,
∴t×t=(2﹣t)×(﹣t),
解得,t=;
(3)当点K到达点N时,则PE+NE=AP,
由
(2)得,﹣t+2=t,
解得,t=;
(4)①当K在PE边上任意一点时△PKB是直角三角形,
即,0<t≤2;
②当点k在EF上时,
则KE=t﹣2,BP=8﹣t,
∵△BPK∽△PKE,
∴PK2=BP×KE,PK2=PE2+KE2,
∴4+(t﹣2)2=(8﹣t)(t﹣2),
解得t=3,t=4;
③当点K运动6秒时,点K到点F,点P还没到点B,
∴点K不可能在BC边上,.
综上,当0<t≤2或t=3或t=4时,△PKB是直角三角形.
。
一.选择题(共12小题)
1.若,则的值为( )
A.1 B. C. D.
2.若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF的面积比为( )
A.3:2 B.2:3 C.4:9 D.9:16
3.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为( )
A.90m B.60m C.45m D.30m
4.如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为( )
A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,﹣4)
C.(2,﹣1) D.(8,﹣4)
5.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于( )
A. B. C. D.
6.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=( )
A. B.2 C. D.
7.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于( )
A.2:5 B.3:5 C.2:3 D.5:7
8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为( )
A.1:3 B.1:5 C.1:6 D.1:11
9.如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B作BE⊥AD交AD的延长线于E.若AC=6,BC=8,则的最大值为( )
A. B. C. D.
10.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于( )
A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10
11.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何。( )
A.10 B.11 C. D.
12.如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF;③;④.其中正确的结论的个数是( )
A.1 B.2 C.3 D.4
二.填空题(共5小题)
13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为 .
14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF= .
15.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形AnBnDnCn的边长是 .
16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP= .
17.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是 .
三.解答题(共6小题)
18.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.
(1)求证:△ABD∽△CBA;
(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.
19.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
20.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
21.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=4,AD=,AE=3,求AF的长.
22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为
2:1,点C2的坐标是 .
23.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).
(1)当t=1时,KE= ,EN= ;
(2)当t为何值时,△APM的面积与△MNE的面积相等。
(3)当点K到达点N时,求出t的值;
(4)当t为何值时,△PKB是直角三角形。
参考答案
一.选择题
1.C.
2.C.
3.B.
4.A.
5.B.
6.A.
7.A.
8.C.
9.B
10.D.
11.D.
12.B.
二.填空题
13.]4.
14.7.5.
15.].
16.3.
17.36.
三.解答题
18.
(1)证明:∵AB=2,BC=4,BD=1,
∴==,
=,
∴=,
∵∠ABD=∠CBA,
∴△ABD∽△CBA;
(2)解:∵DE∥AB,
∴△CDE∽△CBA,
∴△ABD∽△CDE,
∴DE=1.5.
19.
(1)证明:∵ABCD为正方形,
∴AD=AB=DC=BC,∠A=∠D=90°,
∵AE=ED,
∴,
∵DF=DC,
∴,
∴,
∴△ABE∽△DEF;
(2)解:∵ABCD为正方形,
∴ED∥BG,
∴,
又∵DF=DC,正方形的边长为4,
∴ED=2,CG=6,
∴BG=BC+CG=10.
20.
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=90°,AD∥BC,
∴∠AMB=∠EAF,
又∵EF⊥AM,
∴∠AFE=90°,
∴∠B=∠AFE,
∴△ABM∽△EFA;
(2)∵∠B=90°,AB=12,BM=5,
∴AM==13,AD=12,
∵F是AM的中点,
∴AF=AM=6.5,
∵△ABM∽△EFA,
∴,即,
∴AE=16.9,
∴DE=AE﹣AD=4.9.
21.解:
(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠B+∠C=180°,∠ADF=∠DEC,
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C,
∴△ADF∽△DEC;
(2)∵AE⊥BC,AD=3,AE=3,
∴在Rt△DAE中,DE===6,
由
(1)知△ADF∽△DEC,得=,
∴AF===2.
22.解:
(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);
(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为
2:1,点C2的坐标是(1,0),
故答案为:
(1)(2,﹣2);
(2)(1,0)
23.解:
(1)当t=1时,根据题意得,AP=1,PK=1,
∵PE=2,
∴KE=2﹣1=1,
∵四边形ABCD和PEFG都是矩形,
∴△APM∽△ABC,△APM∽△NEM,
∴=, =,
∴MP=,ME=,
∴NE=;
故答案为:1;;
(2)由
(1)并结合题意可得,
AP=t,PM=t,ME=2﹣t,NE=﹣t,
∴t×t=(2﹣t)×(﹣t),
解得,t=;
(3)当点K到达点N时,则PE+NE=AP,
由
(2)得,﹣t+2=t,
解得,t=;
(4)①当K在PE边上任意一点时△PKB是直角三角形,
即,0<t≤2;
②当点k在EF上时,
则KE=t﹣2,BP=8﹣t,
∵△BPK∽△PKE,
∴PK2=BP×KE,PK2=PE2+KE2,
∴4+(t﹣2)2=(8﹣t)(t﹣2),
解得t=3,t=4;
③当点K运动6秒时,点K到点F,点P还没到点B,
∴点K不可能在BC边上,.
综上,当0<t≤2或t=3或t=4时,△PKB是直角三角形.
。
本文来自网友上传,不代表本网站立场,转载请注明出处:https://www.gxfz.org/186357.html
猜你还喜欢
- 初二数学《菱形的定义与性质》说课稿 四边形的定义
- 中考数学专题复习《一元二次方程》专题训练
- 线性的代数性质定理公式全的总结
- 电子线路试题及答案
- 安徽省蚌埠市2018届九年级上期末教学质量监测数学试题含答案
- 2016-2017学年度第一学期期末试卷五年级语文 五年级语文期末试卷
- 2019年全国各地中考数学解析汇编41 方案设计问题
- 2018届江苏省盐城市高三年级第一学期期中考试数学试卷及答案 精品
- 浙江省宁波市九校(余姚中学、镇海中学、慈溪中学、效实中学等)2017-2018学年高一上学期期末数学试卷
- 人教版语文一年级上册笔顺专项练习试卷5套(新审定)
- 人教版九年级数学上册 第二十二章 二次函数 22.2 二次函数与一元二次方程 同步练习题
- 苏科版初中物理知识点总结含公式)
- 站长推荐
- 小学四年级语文试卷分析 四年级语文试卷
- 江苏省苏州市2016-2017学年八年级第一学期12月月考数学试卷(含解析)
- 人教版八年级第二学期英语期中考试试卷
- 人教版小升初数学毕业试题选及答案 小升初数学试卷
- 2019最新华师大版八年级数学上册期中测试题(试卷)
- 人教版高中数学选修44知识点 数轴的定义
- 四川省绵阳市高中2016届高三上学期第二次诊断性考试文科数学试题及答案
- 信息管理考试试卷 考试试卷
- 教师考试试题汇总
- 2019年广州市年初中毕业生学业考试数学试题(word版
- 七年级数学下册《相交线与平行线》尖子生测试题(新人教版)
- 初中一对一精品辅导讲义:圆与圆的位置关系
- 代数式综合测试卷练习题
- 五年级美术试卷 美术试卷
- 2019-2020七年级数学上册第2章代数式单元测试(新版)湘教版
- 一年级数学下期期末考试题
- 圆的基本性质练习(含答案)
- 新课标-精品卷2018年最新北师大版高中数学必修五模块综合测试(b)及答案解析
- 2019-2020年北师大版中考数学模拟试题及答案
- 《普通化学》试卷(一)及答案 化学试卷
- 讲义一:《因式分解》专题辅导讲义
- 四校小学语文试卷批改评分标准
- 部编版一年级语文上册《典中点》第八单元 达标测试卷 一年级上册语文试卷
- 江苏省历年初中数学竞赛试题及解答(23份)
- 《图形旋转》练习题
- 四川省泸州老窖天府中学2017-2018学年七年级上学期期中考试数学试卷
- 5、整式的乘法及乘法公式 上市时间公式
- 禁毒知识大赛试题答案[1]
- 华东师大版九年级上册数学第24章检测题(有答案)
- 2019届上海科技版九年级数学上期末测试题及答案
- 热门标签
-
- 银英文
- 回顾英文
- 期望英文
- 英文版动画片
- 午饭英文
- 定义英文
- 融合英文
- 缺陷英文
- 平安夜英文
- 女子英文名
- 英文转换中文
- 友谊英文
- 圣诞树英文
- 氛围英文
- 愚不可及
- 嫉贤妒能
- 分门别类
- 捷足先登
- 神出鬼没
- 患难与共
- 不怀好意
- 滴水不漏
- 有始无终
- 扭转乾坤
- 胸无城府
- 崇山峻岭
- 问长问短
- 孤注一掷
- 络绎不绝
- 翻箱倒柜
- 目光炯炯
- 风声鹤唳
- 多姿多彩
- 浅尝辄止
- 坚韧不拔
- 千真万确
- 离群索居
- 寄人篱下
- 面不改色
- 歪歪斜斜
- 细嚼慢咽
- 锦囊妙计
- 济济一堂
- 埋头苦干
- 莫逆之交
- 视同陌路
- 死皮赖脸
- 口若悬河
- 夜深人静
- 前仆后继
- 阴差阳错
- 空空如也
- 打招呼的英文
- 极目远眺
- 横冲直撞
- 临渊羡鱼
- 滔滔不绝
- 不慌不忙
- 异口同声
- 争先恐后
- 拍案而起
- 琼楼玉宇
- 茅塞顿开
- 一技之长
- 因材施教
- 南辕北辙
- 适逢其会
- 闲言碎语
- 南征北战
- 慢条斯理
- 自相残杀
- 衣衫褴褛
- 普天之下
- 看破红尘
- 以儆效尤
- 适可而止
- 热泪盈眶
- 雾里看花
- 无坚不摧
- 铿锵有力