主页 > 中学 > 数学 > 正文
2019年人教版中考数学一轮复习《相似三角形》同步练习(含答案)
中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」来源: https://www.gxfz.org 2019-12-13 17:33数学 473 ℃
中考数学复习同步检测
(15)
2019年 中考数学一轮复习 相似三角形
一、选择题
下列叙述正确的是( )
A.任意两个正方形一定是相似的
B.任意两个矩形一定是相似的
C.任意两个菱形一定是相似的
D.任意两个等腰梯形一定是相似的
Rt△ABC的两条直角边分别为3cm、4cm,与它相似的Rt△A/B/C/的斜边为20cm,那么Rt△A/B/C/的周长为( )
A.48cm B.28cm C.12cm D.10cm
如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( )
A.5:8 B.3:8 C.3:5 D.2:5
如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )
A.4 B.4.5 C.5 D.5.5
下列说法中正确的是( )
①在两个边数相同的多边形中,如果对应边成比例,那么这两个多边形相似;
②如果两个矩形有一组邻边对应成比例,那么这两个矩形相似;
③有一个角对应相等的平行四边形都相似;
④有一个角对应相等的菱形都相似.
A.①② B.②③ C.③④ D.②④
如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是 ( )
如图,在▱ABCD中,F是AD延长线上一点,连接BF交DC于点E,则图中相似三角形共有( )对.
A.2对 B.3对 C.4对 D.5对
如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是( )
A. = B. C. D.
下列关于位似图形的表述:
①相似图形一定是位似图形,位似图形一定是相似图形;
②位似图形一定有位似中心;
③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;
④位似图形上任意两点与位似中心的距离之比等于位似比.
其中正确命题的序号是( )
A.② B.①② C.③④ D.②③④
如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )
A.2cm2 B.4cm2 C.8cm2 D.16cm2
如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下树高是( )
A.3.25m B.4.25m C.4.45m D.4.75m
将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则PM:CN的值为( )
A. B. C. D.
二 、填空题
在一张比例尺为1:50000的地图上,如果一块多边形地的面积是100cm2,那么这块地的实际面积是________m2(用科学记数法表示).
如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD= .
如图278,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,则这两个四边形每组对应顶点到位似中心的距离之比是__________.
如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AN的长度
为 .
如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=△MPN中,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.
如图,点A
1、A
2、A
3、…,点B
1、B
2、B
3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1 , A3A4=4OA1 ,….那么A2B2=________,AnBn=________.(n为正整数)
三、解答题
如图,已知在△ABC中,∠ACB的平分线CD交AB于D,过B作BE∥CD交AC的延长线于点E. (1)求证:BC=CE; (2)求证:AD:BD=AC:BC;
如图,点C、D在线段AB上,△PCD是等边三角形,若∠APB=120°.求证:△ACP∽△PDB.
如图,在△ABC中,点D在BC边上,∠DAC=∠B.点E在AD边上,CD=CE.
(1)求证:△ABD∽△CAE;
(2)若AB=6,AC=4.5,BD=2,求AE的长.
如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90°,联结MN、AC,N与边AD交于点E.
(1)求证;AM=AN;
(2)如果∠CAD=2∠NAD,求证:AM2=AC•AE.
如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.
(1)判断AB与⊙O的位置关系,并说明理由;
(2)若PF:PC=1:2,AF=5,求CP的长.
如图,矩形OABC的顶点A.C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=(x>0)的图象经过BC上的点D与AB交于点E,连接DE,若E是AB的中点.
(1)求点D的坐标;
(2)点F是OC边上一点,若△FBC和△DEB相似,求点F的坐标.
参考答案
A
A
A
B
D;
B;
A
A
C
C;
C
答案为:2.5×107
答案为:;
答案为:1:;
答案为:4;
答案为:3;
答案为:6;n(n+1)
证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCD. 又∵BE∥CD,∴∠CBE=∠BCD,∠CEB=∠ACD. ∵∠ACD=∠BCD,∴∠CBE=∠CEB.故△BCE是等腰三角形,BC=CE. (2)∵BE∥CD,根据平行线分线段成比例定理可得AD:BD=AC:CE,
又∵BC=CE,∴AD:BD=AC:BC.
证明:∵△PCD为等边三角形, ∴∠PCD=∠PDC=60°.∴∠ACP=∠PDB=120°.
∵∠APB=120°, ∴∠A+∠B=60°.。
(15)
一、选择题
下列叙述正确的是( )
A.任意两个正方形一定是相似的
B.任意两个矩形一定是相似的
C.任意两个菱形一定是相似的
D.任意两个等腰梯形一定是相似的
Rt△ABC的两条直角边分别为3cm、4cm,与它相似的Rt△A/B/C/的斜边为20cm,那么Rt△A/B/C/的周长为( )
A.48cm B.28cm C.12cm D.10cm
如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( )
A.5:8 B.3:8 C.3:5 D.2:5
如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )
A.4 B.4.5 C.5 D.5.5
下列说法中正确的是( )
①在两个边数相同的多边形中,如果对应边成比例,那么这两个多边形相似;
②如果两个矩形有一组邻边对应成比例,那么这两个矩形相似;
③有一个角对应相等的平行四边形都相似;
④有一个角对应相等的菱形都相似.
A.①② B.②③ C.③④ D.②④
如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是 ( )
如图,在▱ABCD中,F是AD延长线上一点,连接BF交DC于点E,则图中相似三角形共有( )对.
A.2对 B.3对 C.4对 D.5对
如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是( )
A. = B. C. D.
下列关于位似图形的表述:
①相似图形一定是位似图形,位似图形一定是相似图形;
②位似图形一定有位似中心;
③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;
④位似图形上任意两点与位似中心的距离之比等于位似比.
其中正确命题的序号是( )
A.② B.①② C.③④ D.②③④
如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )
A.2cm2 B.4cm2 C.8cm2 D.16cm2
如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下树高是( )
A.3.25m B.4.25m C.4.45m D.4.75m
将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则PM:CN的值为( )
A. B. C. D.
二 、填空题
在一张比例尺为1:50000的地图上,如果一块多边形地的面积是100cm2,那么这块地的实际面积是________m2(用科学记数法表示).
如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD= .
如图278,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,则这两个四边形每组对应顶点到位似中心的距离之比是__________.
如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AN的长度
为 .
如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=△MPN中,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.
如图,点A
1、A
2、A
3、…,点B
1、B
2、B
3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1 , A3A4=4OA1 ,….那么A2B2=________,AnBn=________.(n为正整数)
三、解答题
如图,已知在△ABC中,∠ACB的平分线CD交AB于D,过B作BE∥CD交AC的延长线于点E. (1)求证:BC=CE; (2)求证:AD:BD=AC:BC;
如图,点C、D在线段AB上,△PCD是等边三角形,若∠APB=120°.求证:△ACP∽△PDB.
如图,在△ABC中,点D在BC边上,∠DAC=∠B.点E在AD边上,CD=CE.
(1)求证:△ABD∽△CAE;
(2)若AB=6,AC=4.5,BD=2,求AE的长.
如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90°,联结MN、AC,N与边AD交于点E.
(1)求证;AM=AN;
(2)如果∠CAD=2∠NAD,求证:AM2=AC•AE.
如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.
(1)判断AB与⊙O的位置关系,并说明理由;
(2)若PF:PC=1:2,AF=5,求CP的长.
如图,矩形OABC的顶点A.C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=(x>0)的图象经过BC上的点D与AB交于点E,连接DE,若E是AB的中点.
(1)求点D的坐标;
(2)点F是OC边上一点,若△FBC和△DEB相似,求点F的坐标.
参考答案
A
A
A
B
D;
B;
A
A
C
C;
C
答案为:2.5×107
答案为:;
答案为:1:;
答案为:4;
答案为:3;
答案为:6;n(n+1)
证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCD. 又∵BE∥CD,∴∠CBE=∠BCD,∠CEB=∠ACD. ∵∠ACD=∠BCD,∴∠CBE=∠CEB.故△BCE是等腰三角形,BC=CE. (2)∵BE∥CD,根据平行线分线段成比例定理可得AD:BD=AC:CE,
又∵BC=CE,∴AD:BD=AC:BC.
证明:∵△PCD为等边三角形, ∴∠PCD=∠PDC=60°.∴∠ACP=∠PDB=120°.
∵∠APB=120°, ∴∠A+∠B=60°.。
本文来自网友上传,不代表本网站立场,转载请注明出处:https://www.gxfz.org/186986.html
- 站长推荐
- 小学四年级语文试卷分析 四年级语文试卷
- 江苏省苏州市2016-2017学年八年级第一学期12月月考数学试卷(含解析)
- 人教版八年级第二学期英语期中考试试卷
- 人教版小升初数学毕业试题选及答案 小升初数学试卷
- 2019最新华师大版八年级数学上册期中测试题(试卷)
- 人教版高中数学选修44知识点 数轴的定义
- 四川省绵阳市高中2016届高三上学期第二次诊断性考试文科数学试题及答案
- 信息管理考试试卷 考试试卷
- 教师考试试题汇总
- 2019年广州市年初中毕业生学业考试数学试题(word版
- 七年级数学下册《相交线与平行线》尖子生测试题(新人教版)
- 初中一对一精品辅导讲义:圆与圆的位置关系
- 代数式综合测试卷练习题
- 五年级美术试卷 美术试卷
- 2019-2020七年级数学上册第2章代数式单元测试(新版)湘教版
- 一年级数学下期期末考试题
- 圆的基本性质练习(含答案)
- 新课标-精品卷2018年最新北师大版高中数学必修五模块综合测试(b)及答案解析
- 2019-2020年北师大版中考数学模拟试题及答案
- 《普通化学》试卷(一)及答案 化学试卷
- 讲义一:《因式分解》专题辅导讲义
- 四校小学语文试卷批改评分标准
- 部编版一年级语文上册《典中点》第八单元 达标测试卷 一年级上册语文试卷
- 江苏省历年初中数学竞赛试题及解答(23份)
- 《图形旋转》练习题
- 四川省泸州老窖天府中学2017-2018学年七年级上学期期中考试数学试卷
- 5、整式的乘法及乘法公式 上市时间公式
- 禁毒知识大赛试题答案[1]
- 华东师大版九年级上册数学第24章检测题(有答案)
- 2019届上海科技版九年级数学上期末测试题及答案
- 热门标签
-
- 银英文
- 回顾英文
- 期望英文
- 英文版动画片
- 午饭英文
- 定义英文
- 融合英文
- 缺陷英文
- 平安夜英文
- 女子英文名
- 英文转换中文
- 友谊英文
- 圣诞树英文
- 氛围英文
- 愚不可及
- 嫉贤妒能
- 分门别类
- 捷足先登
- 神出鬼没
- 患难与共
- 不怀好意
- 滴水不漏
- 有始无终
- 扭转乾坤
- 胸无城府
- 崇山峻岭
- 问长问短
- 孤注一掷
- 络绎不绝
- 翻箱倒柜
- 目光炯炯
- 风声鹤唳
- 多姿多彩
- 浅尝辄止
- 坚韧不拔
- 千真万确
- 离群索居
- 寄人篱下
- 面不改色
- 歪歪斜斜
- 细嚼慢咽
- 锦囊妙计
- 济济一堂
- 埋头苦干
- 莫逆之交
- 视同陌路
- 死皮赖脸
- 口若悬河
- 夜深人静
- 前仆后继
- 阴差阳错
- 空空如也
- 打招呼的英文
- 极目远眺
- 横冲直撞
- 临渊羡鱼
- 滔滔不绝
- 不慌不忙
- 异口同声
- 争先恐后
- 拍案而起
- 琼楼玉宇
- 茅塞顿开
- 一技之长
- 因材施教
- 南辕北辙
- 适逢其会
- 闲言碎语
- 南征北战
- 慢条斯理
- 自相残杀
- 衣衫褴褛
- 普天之下
- 看破红尘
- 以儆效尤
- 适可而止
- 热泪盈眶
- 雾里看花
- 无坚不摧
- 铿锵有力