主页 > 中学 > 数学 > 正文
中考数学复习同步检测
(15)
中考数学复习必备教案——一次函数的应用
知识点回顾:
知识点一:根据实际问题中给出的数据列相应的函数表达式、解决实际问题
例1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。
⑴写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:
①用水量小于等于3000吨 ;
②用水量大于3000吨 。
⑵某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元。
⑶若某月该单位缴纳水费1540元,则该单位用水多少吨。
参考答案:
(1)y=0.5 x 、y=1500+ 0.8(x-3000)
(2)1660 1400
(3) 3050
同步检测:
(2008年乌兰察布)声音在空气中传播的速度(m/s)是气温(℃)的一次函数,下表列出了一组不同气温的音速:
气温(℃)
0
5
10
15
20
音速(m/s)
331
334
337
340
343
(1)求与之间的函数关系式;
(2)气温℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远。
参考答案:
(1)设,
,
(2)当时,.
.
此人与烟花燃放地相距约1724m.
知识点二:利用一次函数对实际问题中的方案进行比较
例
2:(2009年潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案。并说明理由.
参考答案:
(1)从纸箱厂定制购买纸箱费用:
蔬菜加工厂自己加工纸箱费用: .
(2),
由,得:,
解得:. 当时,,
选择方案一,从纸箱厂定制购买纸箱所需的费用低.
当时,,
选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.
当时,,
两种方案都可以,两种方案所需的费用相同.
同步检测:
(2009年牡丹江)某冰箱厂为响应国家“家电下乡”号召,计划生产、两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:
型号
A型
B型
成本(元/台)
2200
2600
售价(元/台)
2800
3000
(1)冰箱厂有哪几种生产方案。
(2)该冰箱厂按哪种方案生产,才能使投入成本最少。
“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元。
(3)若按
(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.
参考答案:
(1)设生产型冰箱台,则型冰箱为台,由题意得:
解得:
是正整数
取38,39或40.
有以下三种生产方案:
方案一
方案二
方案三
A型/台
38
39
40
B型/台
62
61
60
(2)设投入成本为元,由题意有:
随的增大而减小
当时,有最小值.
即生产型冰箱40台,型冰箱50台,该厂投入成本最少
此时,政府需补贴给农民
(3)实验设备的买法共有10种.
知识点三:结合实际问题的函数图象解决实际问题
例
3:(2009年长春)某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),两班一起植树所用的时间(从甲班开始植树时计时)为(时),、分别与之间的部分函数图象如图所示.
(1)当时,分别求、与之间的函数关系式.
(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当时,甲、乙两班植树的总量之和能否超过260棵.
(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.
参考答案:
(1)设y甲=k1x,把(6,120)代入,得k1=20,∴y甲=20x.
当x=3时,y甲=60.设y乙=k2x+b,把(0,30),(3,60)代入,得b=30,
3k2+b=60.解得k2=10, b=30.∴y乙=10x+30.
(2)当x=8时,y甲=8×20=160, y乙=8×10+30=110.
∵160+110=270>260,∴当x=8时,甲、乙两班植树的总量之和能超过260棵.
(3)设乙班增加人数后平均每小时植树a棵.
当乙班比甲班多植树20棵时,有6×10+30+2a-20×8=20.解得a=45.
当甲班比乙班多植树20棵时,有20×8-(6×10+30+2a)=20.解得a=25.
所以乙班增加人数后平均每小时植树45棵或25棵.
同步检测:
(2008年泰安市)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数(亩)与补贴数额(元)之间大致满足如图1所示的一次函数关系.随着补贴数额的不断增大,出口量也不断增加,但每亩蔬菜的收益(元)会相应降低,且与之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少。
(2)分别求出政府补贴政策实施后,种植亩数和每亩蔬菜的收益与政府补贴数额之间的函数关系式;
(3)要使全市这种蔬菜的总收益(元)最大,政府应将每亩补贴数额定为多少。并求出总收益的最大值.
参考答案:
(1)政府没出台补贴政策前,这种蔬菜的收益额为
(元)
(2)由题意可设与的函数关系为
将代入上式得,得
所以种植亩数与政府补贴的函数关系为
同理可得每亩蔬菜的收益与政府补贴的函数关系为
(3)由题意
所以当,即政府每亩补贴450元时,全市的总收益额最大,最大为7260000元.
随堂检测
1.(哈尔滨市2008 )小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是( ).
2. (2009成都)某航空公司规定,旅客乘机所携带行李的质量(kg)与其运费(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为
(A)20kg (B)25kg (C)28kg (D)30kg
3.(2008年遵义市)小强利用星期日参加了一次社会实践活动,他从果农处以每千克3元的价格购进若干千克草莓到市场上销售,在销售了10千克时,收入50元,余下的他每千克降价1元出售,全部售完,两次共收入70元.已知在降价前销售收入(元)与销售重量(千克)之间成正比例关系.请你根据以上信息解答下列问题:
(1)求降价前销售收入(元)与售出草莓重量(千克)之间的函数关系式;并画出其函数图象;
(2)小强共批发购进多少千克草莓。
小强决定将这次卖草莓赚的钱全部捐给汶川地震灾区,那么小强的捐款为多少元。
4. (2008年双柏县)(本小题8分)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的重量不超过装运的A、C两种水果重量之和.。
(15)
知识点回顾:
知识点一:根据实际问题中给出的数据列相应的函数表达式、解决实际问题
例1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。
⑴写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:
①用水量小于等于3000吨 ;
②用水量大于3000吨 。
⑵某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元。
⑶若某月该单位缴纳水费1540元,则该单位用水多少吨。
参考答案:
(1)y=0.5 x 、y=1500+ 0.8(x-3000)
(2)1660 1400
(3) 3050
同步检测:
(2008年乌兰察布)声音在空气中传播的速度(m/s)是气温(℃)的一次函数,下表列出了一组不同气温的音速:
气温(℃)
0
5
10
15
20
音速(m/s)
331
334
337
340
343
(1)求与之间的函数关系式;
(2)气温℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远。
参考答案:
(1)设,
,
(2)当时,.
.
此人与烟花燃放地相距约1724m.
知识点二:利用一次函数对实际问题中的方案进行比较
例
2:(2009年潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案。并说明理由.
参考答案:
(1)从纸箱厂定制购买纸箱费用:
蔬菜加工厂自己加工纸箱费用: .
(2),
由,得:,
解得:. 当时,,
选择方案一,从纸箱厂定制购买纸箱所需的费用低.
当时,,
选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.
当时,,
两种方案都可以,两种方案所需的费用相同.
同步检测:
(2009年牡丹江)某冰箱厂为响应国家“家电下乡”号召,计划生产、两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:
型号
A型
B型
成本(元/台)
2200
2600
售价(元/台)
2800
3000
(1)冰箱厂有哪几种生产方案。
(2)该冰箱厂按哪种方案生产,才能使投入成本最少。
“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元。
(3)若按
(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.
参考答案:
(1)设生产型冰箱台,则型冰箱为台,由题意得:
解得:
是正整数
取38,39或40.
有以下三种生产方案:
方案一
方案二
方案三
A型/台
38
39
40
B型/台
62
61
60
(2)设投入成本为元,由题意有:
随的增大而减小
当时,有最小值.
即生产型冰箱40台,型冰箱50台,该厂投入成本最少
此时,政府需补贴给农民
(3)实验设备的买法共有10种.
知识点三:结合实际问题的函数图象解决实际问题
例
3:(2009年长春)某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),两班一起植树所用的时间(从甲班开始植树时计时)为(时),、分别与之间的部分函数图象如图所示.
(1)当时,分别求、与之间的函数关系式.
(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当时,甲、乙两班植树的总量之和能否超过260棵.
(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.
参考答案:
(1)设y甲=k1x,把(6,120)代入,得k1=20,∴y甲=20x.
当x=3时,y甲=60.设y乙=k2x+b,把(0,30),(3,60)代入,得b=30,
3k2+b=60.解得k2=10, b=30.∴y乙=10x+30.
(2)当x=8时,y甲=8×20=160, y乙=8×10+30=110.
∵160+110=270>260,∴当x=8时,甲、乙两班植树的总量之和能超过260棵.
(3)设乙班增加人数后平均每小时植树a棵.
当乙班比甲班多植树20棵时,有6×10+30+2a-20×8=20.解得a=45.
当甲班比乙班多植树20棵时,有20×8-(6×10+30+2a)=20.解得a=25.
所以乙班增加人数后平均每小时植树45棵或25棵.
同步检测:
(2008年泰安市)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数(亩)与补贴数额(元)之间大致满足如图1所示的一次函数关系.随着补贴数额的不断增大,出口量也不断增加,但每亩蔬菜的收益(元)会相应降低,且与之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少。
(2)分别求出政府补贴政策实施后,种植亩数和每亩蔬菜的收益与政府补贴数额之间的函数关系式;
(3)要使全市这种蔬菜的总收益(元)最大,政府应将每亩补贴数额定为多少。并求出总收益的最大值.
参考答案:
(1)政府没出台补贴政策前,这种蔬菜的收益额为
(元)
(2)由题意可设与的函数关系为
将代入上式得,得
所以种植亩数与政府补贴的函数关系为
同理可得每亩蔬菜的收益与政府补贴的函数关系为
(3)由题意
所以当,即政府每亩补贴450元时,全市的总收益额最大,最大为7260000元.
随堂检测
1.(哈尔滨市2008 )小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是( ).
2. (2009成都)某航空公司规定,旅客乘机所携带行李的质量(kg)与其运费(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为
(A)20kg (B)25kg (C)28kg (D)30kg
3.(2008年遵义市)小强利用星期日参加了一次社会实践活动,他从果农处以每千克3元的价格购进若干千克草莓到市场上销售,在销售了10千克时,收入50元,余下的他每千克降价1元出售,全部售完,两次共收入70元.已知在降价前销售收入(元)与销售重量(千克)之间成正比例关系.请你根据以上信息解答下列问题:
(1)求降价前销售收入(元)与售出草莓重量(千克)之间的函数关系式;并画出其函数图象;
(2)小强共批发购进多少千克草莓。
小强决定将这次卖草莓赚的钱全部捐给汶川地震灾区,那么小强的捐款为多少元。
4. (2008年双柏县)(本小题8分)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的重量不超过装运的A、C两种水果重量之和.。
本文来自网友上传,不代表本网站立场,转载请注明出处:https://www.gxfz.org/186997.html
- 站长推荐
- 小学四年级语文试卷分析 四年级语文试卷
- 江苏省苏州市2016-2017学年八年级第一学期12月月考数学试卷(含解析)
- 人教版八年级第二学期英语期中考试试卷
- 人教版小升初数学毕业试题选及答案 小升初数学试卷
- 2019最新华师大版八年级数学上册期中测试题(试卷)
- 人教版高中数学选修44知识点 数轴的定义
- 四川省绵阳市高中2016届高三上学期第二次诊断性考试文科数学试题及答案
- 信息管理考试试卷 考试试卷
- 教师考试试题汇总
- 2019年广州市年初中毕业生学业考试数学试题(word版
- 七年级数学下册《相交线与平行线》尖子生测试题(新人教版)
- 初中一对一精品辅导讲义:圆与圆的位置关系
- 代数式综合测试卷练习题
- 五年级美术试卷 美术试卷
- 2019-2020七年级数学上册第2章代数式单元测试(新版)湘教版
- 一年级数学下期期末考试题
- 圆的基本性质练习(含答案)
- 新课标-精品卷2018年最新北师大版高中数学必修五模块综合测试(b)及答案解析
- 2019-2020年北师大版中考数学模拟试题及答案
- 《普通化学》试卷(一)及答案 化学试卷
- 讲义一:《因式分解》专题辅导讲义
- 四校小学语文试卷批改评分标准
- 部编版一年级语文上册《典中点》第八单元 达标测试卷 一年级上册语文试卷
- 江苏省历年初中数学竞赛试题及解答(23份)
- 《图形旋转》练习题
- 四川省泸州老窖天府中学2017-2018学年七年级上学期期中考试数学试卷
- 5、整式的乘法及乘法公式 上市时间公式
- 禁毒知识大赛试题答案[1]
- 华东师大版九年级上册数学第24章检测题(有答案)
- 2019届上海科技版九年级数学上期末测试题及答案
- 热门标签
-
- 银英文
- 回顾英文
- 期望英文
- 英文版动画片
- 午饭英文
- 定义英文
- 融合英文
- 缺陷英文
- 平安夜英文
- 女子英文名
- 英文转换中文
- 友谊英文
- 圣诞树英文
- 氛围英文
- 愚不可及
- 嫉贤妒能
- 分门别类
- 捷足先登
- 神出鬼没
- 患难与共
- 不怀好意
- 滴水不漏
- 有始无终
- 扭转乾坤
- 胸无城府
- 崇山峻岭
- 问长问短
- 孤注一掷
- 络绎不绝
- 翻箱倒柜
- 目光炯炯
- 风声鹤唳
- 多姿多彩
- 浅尝辄止
- 坚韧不拔
- 千真万确
- 离群索居
- 寄人篱下
- 面不改色
- 歪歪斜斜
- 细嚼慢咽
- 锦囊妙计
- 济济一堂
- 埋头苦干
- 莫逆之交
- 视同陌路
- 死皮赖脸
- 口若悬河
- 夜深人静
- 前仆后继
- 阴差阳错
- 空空如也
- 打招呼的英文
- 极目远眺
- 横冲直撞
- 临渊羡鱼
- 滔滔不绝
- 不慌不忙
- 异口同声
- 争先恐后
- 拍案而起
- 琼楼玉宇
- 茅塞顿开
- 一技之长
- 因材施教
- 南辕北辙
- 适逢其会
- 闲言碎语
- 南征北战
- 慢条斯理
- 自相残杀
- 衣衫褴褛
- 普天之下
- 看破红尘
- 以儆效尤
- 适可而止
- 热泪盈眶
- 雾里看花
- 无坚不摧
- 铿锵有力