初中数学基础知识测试卷-A_中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」




主页 > 中学 > 数学 > 正文

初中数学基础知识测试卷-A

中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」来源: https://www.gxfz.org 2019-12-13 17:37数学 905 ℃
初三数学基础知识测试
初中数学基础知识测试卷
题 号



总分
得 分
总分人
评卷人
得分
一、单项选择题
(每小题2分,共20分)

1、视力表对我们来说并不陌生.如图是视力表的一部分,
其中开口向上的两个“E”之间的变换是【  】
A、平移       
B、旋转
C、对称       
D、位似

2、设是方程的两个实数根,则的值为    【  】
A、2006        B、2007
C、2008        D、2009

3、一个长方体的左视图、俯视图及相关数据如图所示,
则其主视图的面积为【  】
A、6        B、8
C、12        D、24

4、如图,数轴上两点表示的数分别为和,
点B关于点A的对称点为C,则点C所表示的数为【  】
A、        B、
C、        D、

5、某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是    【  】
A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间       
B、将六个平均成绩之和除以6,就得到全年级学生的平均成绩
C、这六个平均成绩的中位数就是全年级学生的平均成绩       
D、这六个平均成绩的众数不可能是全年级学生的平均成绩

6、如图,直线经过点和点,
直线过点A,则不等式的解集为【  】
A、              B、
C、          D、

7、现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有    【  】
A、2种        B、3种    C、4种        D、5种

8、如图,等边的边长为3,为上一点,
且,为上一点,若,则
的长为【  】
A、        B、
C、        D、

9、二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为    【  】

10、利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是【  】

A、73cm            B、74cm    C、75cm        D、76cm
评卷人
得分
二、填空题
(每空2分,共10分)

11、设,,则的值等于        .

12、如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是        .

13、如果不等式组的解集是,那么的值为        .
序号
1
2
3

图形





14、观察右表,回答问题:第        个图形中“△”的个数是“○”    的个数的5倍.

15、如图,与中,交于.给出下列结论:
①;②;
③;④.
其中正确的结论是        (填写所有正确结论的序号).
评卷人
得分
三、计算题(本题共6小题,共70分)

16、(本题满分10分)
某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).
请你根据图中提供的信息,回答下列问题:

(1)求出扇形统计图中的值,并求出该校初一学生总数;

(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图;

(3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数;

(4)在这次抽样调查中,众数和中位数分别是多少。


(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人。


17、(本题满分10分)
腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为,底部B点的俯角为,小华在五楼找到一点D,利用三角板测得A点的俯角为(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据).


18、(本题满分10分)
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.


(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)


(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元。



(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高。最高利润是多少。


19、(本题满分10分)
如图,AB,BC分别是的直径和弦,点D为上一点,弦DE交于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且,连接,交于点M,连接.
求证:

(1);


(2).


20、(本题满分15分)
如图,直角梯形ABCD中,,,且,过点D作,交的平分线于点E,连接BE.


(1)求证:;


(2)将绕点C,顺时针旋转得到,连接EG..
求证:CD垂直平分EG.


(3)延长BE交CD于点P.
求证:P是CD的中点.


21、(本题满分15分)
如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是.


(1) 求抛物线对应的函数表达式;


(2) 经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形。若存在,请求出点的坐标;若不存在,请说明理由;


(3) 设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;


(4) 当是直线上任意一点时,

(3)中的结论是否成立。(请直接写出结论).。

Tags:

本文来自网友上传,不代表本网站立场,转载请注明出处:https://www.gxfz.org/187011.html
  • 站长推荐
热门标签