志远奥数七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)_中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」




主页 > 中学 > 数学 > 正文

志远奥数七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」来源: https://www.gxfz.org 2019-11-13 23:33数学 895 ℃
志远,奥数,七年级,数学,上册,一元,一次方程,一元一次方程应用题专题讲解
各类题型解法分析
一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,劳动力调配问题,分配问题,配套问题,利润问题,数字问题,方案设计与成本分析,比赛积分问题,古典数学,浓度问题,储蓄问题,日历中的数学问题等。

(一)和、差、倍、分问题——读题分析法
这类问题主要应搞清各量之间的关系,注意关键词语。仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

增长量=原有量×增长率      现在量=原有量+增长量

例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元。
例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤。


(二)等积变形问题
等积变形是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式      V=底面积×高=S·h=
②长方体的体积          V=长×宽×高=abc

例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根。


(三)数字问题
1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9),则这个三位数表示为:100a+10b+c.
2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。

例4.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
例5.一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的小9,求这个两位数。


(四)商品利润问题(市场经济问题或利润赢亏问题)


(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。


(2)利润问题常用等量关系:
商品利润=商品售价-商品进价=商品标价×折扣率-商品进价
商品利润率=×100%=×100%


(3)商品销售额=商品销售价×商品销售量
商品的销售利润=(销售价-成本价)× 销售量


(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率.


5: 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少。

(五)行程问题——画图分析法
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
1.行程问题中的三个基本量及其关系:
路程=速度×时间  时间=路程÷速度  速度=路程÷时间
2.行程问题基本类型


(1)相遇问题:速度和×相遇时间=相遇路程


(2)追及问题:速度差×追及时间=追及路程


(3)航行问题:顺水(风)速度=船速+水流(风)速度
逆水(风)速度=船速-水流(风)速度
水流速度=(顺水速度-逆水速度)÷2
船速=(顺水速度+逆水速度)÷2
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.


(4)火车行程:(桥长+车身长)÷过桥速度=过桥时间
常见的还有:相背而行;行船问题;环形跑道问题。



6:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。


(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?


(2)两车同时开出,相背而行多少小时后两车相距600公里。


(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里。


(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车。


(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车。 (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)

7: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离。

(六)工程问题
1.工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间   

2.经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和=总工作量=1.
工程问题常用等量关系:先做的+后做的=完成量.


9:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程。

10:一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池。

(七)储蓄问题
1.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.
2.储蓄问题中的量及其关系为:
利息=本金×利率×期数         
本息和=本金+利息
×100%             
利息税=利息×税率(20%)


11:某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少。(不计利息税)

(八)配套问题:
这类问题的关键是找对配套的两类物体的数量关系。



12:某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)。

13:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套。


(九)劳力调配问题
这类问题要搞清人数的变化,常见题型有:


(1)既有调入又有调出;


(2)只有调入没有调出,调入部分变化,其余不变;


(3)只有调出没有调入,调出部分变化,其余不变。


例14.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间。
例15.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

16:有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的 ,应从乙队调多少人到甲队。
(十)比例分配问题
比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。



14:甲、乙、丙三个人每天生产机器零件数为甲、乙之比为
4:3;乙、丙之比为
6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件。

15:学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。


(11)年龄问题
相关数量关系:年龄差不变,自然增长量不变,倍数变,再结合和、差、倍、分的问题求解。



17:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍。


18:三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和事41,求乙同学的年龄。

(十二)比赛积分问题
比赛分平、胜、负,已知总场次,总积分,再按计分原则列方程求解。

19:某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了      道题。
(十二)方案选择问题
例20.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多。
为什么。



(14)古典数学
鸡、兔同笼问题、盈亏问题、
例21.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。
例22.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只。


(15)日历中的数学问题 利用上下差7,左右差1这一个数量关系式列方程求解。

X-8
X-7
X-6
X-1
x
X+1
X+6
X+7
X+8。

Tags: 数学 志远 一元 七年级 一次方程 奥数 上册

本文来自网友上传,不代表本网站立场,转载请注明出处:https://www.gxfz.org/83877.html
  • 站长推荐
热门标签