九年级上一元二次方程应用题分类练习题_中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」




主页 > 中学 > 数学 > 正文

九年级上一元二次方程应用题分类练习题

中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」来源: https://www.gxfz.org 2019-11-14 00:18数学 488 ℃
九年级,上,一元二次方程,应用题,分类,练习题,一元二次方程的应用分类
(一)传播问题
①审题;②设未知数;③列方程;④解方程;⑤检验根是否符合实际情况;⑥作答。
1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人。
2.某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌。
3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支。

(二)平均增长率问题
变化前数量×(1x)n=变化后数量
1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是多少。
3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求

2、3月份价格的平均增长率。
4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率。
5.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数。

(三)握手问题
1,一个小组有若干人,新年互送贺卡,已知全组共送贺卡56张,则这个小组有        人。

2, 假设每一位参加宴会的人见面时都要与其他人握手致意,这次宴会共握手28次,问参加这次宴会的共有多少人。
3.参加一次聚会的每两个人都握了一次手,所有人共握手10次,有多少人参加聚会。

4.参加一次足球联赛的每两个队之间都进行两次比赛,共要比赛90场,共有多少个队参加比赛。
5.学校组织一次兵乓球比赛,参赛的每两个选手都要比赛一场,所有比赛一共有36场,问有多少名同学参赛。用一元二次方程,化成一般形式。



(四)商品销售问题
售价—进价=利润
一件商品的利润×销售量=总利润
单价×销售量=销售额
1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元。每天要售出这种商品多少件。
2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R P与x的关系式分别为R=500+30X,P=170—2X。



(1) 当日产量为多少时每日获得的利润为1750元。


(2) 若可获得的最大利润为1950元,问日产量应为多少。
3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元。
4.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元。为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元。
5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克。
为了促销,该经营户决定降价销售。
经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外,每天的房租等固定成本共24元。
该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元。
6.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件,如果商场平均每天要盈利1200元,每件衬衫应降价多少元。
7.某商店如果将进货价格为8元的商品按每件10元售出,每天可销售200件,现采取提高售价,减少进货量的方法,增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,问应将售价定为多少元时可赚利润720元。
8.一超市销售某种品牌的牛奶,进价为每盒1.5元,售价为每盒2.2元时,每天可售5000盒,经过调查发现,若每盒降价0.1元,则可多卖2000盒。
要使每天盈利4500元,问该超市如何定价。
9.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元。

10.关山超市销售某种电视机,每台进货价为2500元,经过市场调查发现:当销售价为2900元时,平均每天能售出8台电视机,而当销售价每降低50元时,平均每天就能多售出4台商场要想使这种电视机的销售利润每天达到5000元,每台电视机的定价应为多少元?

(五)面积问题
判断清楚要设什么是关键
1.一个直角三角形的两条直角边的和是14cm,面积是24cm2,求两条直角边的长。
2.一个直角三角形的两条直角边相差5㎝,面积是7㎝2,求斜边的长。
3.一个菱形两条对角线长的和是10㎝,面积是12㎝2,求菱形的周长(结果保留小数点后一位)
4.为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面积是3200平方米则操场的长为      米,宽为    米。

5.若把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积的2 倍比正方形的面积多11cm2,则原正方形的边长为      cm.
6.一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽。

7.有一面积为54cm2的长方形,将它的一组对边剪短5cm,另一组对边剪短2cm,刚好变成一个正方形,这个正方形的边长是多少?
8.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长。
9.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元钱,问张大叔购买这张铁皮共花了多少元钱。

10.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551㎡。则道路的宽为?

(六)浓度问题
1一个容器盛满纯酒精20升,第一次倒出纯酒精若干升后,加水注满,第二次倒出相同数量的酒精,这时容器内的纯酒精只是原来的三分之一,问第一次倒出纯酒精多少升。

2一个容器盛满纯酒精20升,第一次倒出若干升后用水装满,第二次又倒出同样多的液体,再用水加满,这时容器内剩下的纯酒精是5升,求每次倒出液体的升数
3容器内盛满60升纯酒精,倒出若干升后用水加满,第二次倒出比第一次多14升的溶液,再用水加满。
这时容器内纯酒精和水正好各占一半,问第一次倒出了纯酒精多少升。
4一个容器里装满了40升酒精,第一次倒出一部分纯酒精后,用水注满;第二次又倒出同样多的混合液体后,再用水注满,此时,容器内的溶液中含纯酒精25%.求第一次倒出的酒精的升数.
5从盛满63升纯酒精的容器里倒出若干升后注满水,再从容器里倒出同样升数的酒精溶液,这时容器里只剩下28升的纯酒精,问每次倒出液体的升数.

(七)数字问题
1  两个数的和为8,积为9.75,求这两个数。
2两个连续偶数的积是168,则这两个偶数是__________.
3  .一个两位数,个位数字与十位数字之和为5,把个位数字与十位数字对调,所得的两位数与原来的两位数的乘积为736,求原来的两位数。


(八)行程问题:


1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇。问甲、乙的速度各是多少?



2、甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.


3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.


4、甲、乙两人分别骑车从A,B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进。
乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度。

(九)工程问题:


1、某公司需在一个月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.

(1)求甲、乙两工程队单独完成此项工程所需的天数.

(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少。



2、某油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开放3小时后,甲管因发生故障停止注油,乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时。。

Tags: 九年级 应用题 练习题 分类

本文来自网友上传,不代表本网站立场,转载请注明出处:https://www.gxfz.org/84027.html
  • 站长推荐
热门标签