北师大版,初三,九年级数学数学上册,课后习题答案_中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」




主页 > 中学 > 数学 > 正文

北师大版,初三,九年级数学数学上册,课后习题答案

中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」来源: https://www.gxfz.org 2019-11-14 10:17数学 236 ℃
北师大,版,初三,九年级,数学,上册,课后,习题,北师大版,初三,九年级数学数学上册,课后习题答案
第4页练习答案
解:因为在菱形ABCD中,AC±BD于点O,所以∠AOB=90°.
在Rt△ABO中,OB=√(AB^2-AO^2 )=√(5^2-4^2 )=3(cm).
因为在菱形ABCD中,对角线AC,BD互相平分,所以BD=2OB=6cm.
1.11.证明:∵四边形ABCD是菱形,∴BC=AB,BC//AD,∴∠B+∠BAD=180°(两直线平行,同旁内角互补).
∵∠BAD=2∠B,∴∠B+2∠B=180°,∴∠B=60°.∵BC=AB,
∴△ABC是等边三角形(有一个角为60°的等腰三角形的等边三角形).
2.解:∵四边形ABCD是菱形,∴AD=DC=CB=BA,∴AC±BD,AO=1/2 AC= 1/2×8=4,DO= 1/2 BD= 1/2×6=3.在Rt△AOD中,由勾股定理,得AD=√(AO²+DO²)=√(4²+3²)=5.∴菱形ABCD的周长为4AD=4×5=20.
3.证明:∵四边形ABCD是菱形,∴AD=AB,AC±BD,DO=BO,∴△ABD是等腰三角形,∴AO是等腰△ABD低边BD上的高,中线,也是∠DAB的平分线,∴AC平分∠BAD.
同理可证AC平分∠BCD,BD平分∠ABC和∠ADC.
4.解:有4个等腰三角形和4个直角三角形.
第7页练习答案
解,所画菱形AB-CD如图1-1-32所示,使对角线AC=6cm,BD=4cm.

1.21.证明:在□ABCD中,AD//BC,∴∠EAO=∠FCO(两直线平行,内错角相等).
∵EF是AC的垂直平分线,∴AO=CO.在△AOE和△COF中,
∴△AOE≌△COF(ASA),∴AE=CF.∵AE//CF,
∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形).
∵EF±AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).
2.证明:∵四边形ABCD是菱形,∴AC±BD,OA=OC,OB=OD.又∵点E,F,G,H,分别是OA,OB,OC,OD的中点,
∴OE=1/2OA,OG=1/2 OG,OF= 1/2 OB,OH= 1/2 OD,∴OE=OG,OF=OH,
∴四边形EFGH是平行四边形(对角线互相平分的四边形是平行四边形).
∵AC⊥BD,即EG⊥HF,∴平行四边形EFGH是菱形(对角线互相垂直的平行四边形是菱形).
3.解:四边形CDC′E是菱形.
证明如下:由题意得,△C′DE≌△CDE.所以∠C′DE=∠CDE,C^' D=CD,CE=C^' E.又因为AD//BC,所以∠C′DE=∠CED,所以∠CDE=∠CED,所以CD=CE(等角对等边),所以CD=CE=C′E=C′D,所以四边形CDC′E是菱形(四边相等的四边形是菱形).
第9页练习答案
1.解:
(1)如图1-1-33所示.∵四边形AB-CD是菱形,∴AB=BC=CD=DA=1/4×40=10(cm).

∵对角线AC=10cm,∴AB=BC=AC,∴△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°.
∵AD//BC,∴∠BAD+∠B=180°,∴∠BAD=180°-∠B=180°-60°=120°,∴∠BCD=∠BAD=120°,∠D=∠B=60°.

(2)如图1-1-34所示,连接BD,交AC于点O,∴AO=1/2 AC= 1/2×10=5(cm).

在Rt△AOB中,∠AOB=90°,由勾股定理,得BO=√(AB^2-AO^2 )=√(〖10〗^2-5^2 )=5√3 (cm),
∴BD=2BO=2×5√3=10√3 (cm),∴这个菱形另一条对角线的长为10√3 cm.
2.证明:在Rt△ABC中,∠ACB=90°,∠BAC=60°,
∴∠B=90°-∠BAC=90°-60°=30°.
∵FD是BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=30°(等边对等角).
∴∠ECA=∠ACB-∠ECB=90°-30°=60°.
在△AEC中,∠EAC+∠ECA+∠AEC=180°,∴∠AEC=180°-∠EAC-∠ECA=180°-60°-60°=60°.
∴△AEC是等边三角形,∴AC=CE.在Rt△BDE中,∠BDE=90°,
∴∠BED=90°-∠B=90°-30°=60°.∴∠AEF=∠BED=60°(对顶角相等).
∵AE=CF,AF=CE,∴AF=AE,
∴△AEF是等边三角形(有一个角等于60°的等腰三角形是等边三角形).
∴AF=EF,∴AF=EF=CE=AC,∴四边形ACEF是菱形(四边相等的四边形是菱形).
1.31.证明:
(1)∵四边形ABCD是菱形,
∴AD=CD,AB=CB,∠A=∠C.
∵BE=BF,∴AB-BE=CB-BF,即AE=CF.
在△ADE和CDF中,.

(2)∵△ADE≌△CDF,∴DE=DF,∴∠DEF=∠DFE(等边对等角). 
2.已知:如图1-1-35所示,四边形ABCD是菱形,AC和BD是对角线.

求证:S菱形ABCD=1/2 AC∙BD.证明:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∴S△AOB=S△AOD=S△BOC=S△COD=1/2 .
∴S菱形ABCD=4×1/2 AO∙BO= 1/2×2AO∙2BO=1/2 AC∙BD.
3.解:在菱形ABCD中,AC⊥BD,∴∠AOB=90°,AO= 1/2 AC= 1/2×16=8,BO= 1/2 BD= 1/2×12=6.
在Rt△AOB中,由勾股定理,得AB=√(AO^2+BO^2 )=√(8^2+6^2 )=10.
∵S菱形ABCD=1/2 AC∙BD= 1/2×16×12=96,
又∵DH⊥AB,∴S菱形ABCD=AB∙DH,
∴96=AB∙DH,即96=10DH,DH=9.6.
∴菱形ABCD的高DH为9.6.
4.证明:∵点E,F,G,H分别是AB,CD,AC,BD,的中点,∴GF是△ADC的中位线,EH是△ABD的中位线,∴GF//AD,GF=1/2 AD,EH//AD,EH=1/2AD,
∴GF//EH,GF=EH,∴四边形EGFH是平行四边形(一组对边平行且相等的四边形是平行四边形),
又∵FH是△BDC的中位线,∴FH=1/2 BC.
又∵AD=BC,∴GF=FH,∴平行四边形EGFH是菱形(一组邻边相等的平行四边形是菱形).
第13页练习答案
解:在矩形ABCD中,AO=4,BD=AC=2AO=8.因为∠BA=90°,所以在Rt△BAD中,由勾股定理,得AD=√(BD^2-AB^2 )=√(8^2-6^2 )=2√7.
所以BD与AD的长分别为8与2√7.
1.4
1.解:如图1-2-33所示,设这个矩形为ABCD,两条对角线相交于点O,OA=OB=3.在△AOB中,∠OAB=∠OBA=45°,于是∠AOB=90°,AB=√(OB^2+OA^2 )=3√2,同理AD=3√2,所以 BC=AD=3√2 AB=DC=3√2
所以这个矩形的各边长都是3√2.
2.解:如图1-2-34所示,
设这个矩形AB-CD两条对角线相交于点O,∠AOB=60°,AC=BD=15,∴AO=1/2AC=7.5,BO=1/2 BD=7.5,∴OA=OB,
∴△AOB是等边三角形,∴AB=7.5.
3.解:四边形ADCE是菱形.
证明如下:在Rt△ABC中,∠ACB=90°,D为AB的中点,∴CD=1/2 AB,AD= 1/2 AB,
∴AD=CD.∵AE//CD,CE//AD,∴四边形ADCE是平行四边形.
又∵AD=CD,∴平行四边形ADCE是菱形(一组邻边相等的平行四边形是菱形)
4.已知:如图1-2-35所示,
在△ABC中,BO为AC边上的中线,BO=1/2 AC.  
求证:△ABC是直角三角形.
证明:如图1-2-35所示,延长BO到D,使BO=DO,连接AD,CD.
∵AO=CO,BO=DO,∴四边形ABCD是矩形.∴∠ABC=90°.
∴△ABC是直角三角形.
第16页练习答案
证明:∵四边形ABCDS是平行四边形,∴AB=DC.
∵M是AD的中点,∴AM=DM.又∵MB=MC,∴△ABM≌△DCM(SSS),
∴∠A=∠D.又∵AB//DC,∴∠A+∠D=180°,∴∠A=∠D=90°.
∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).
1.51.解:
(1)四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).

(2)当△ABC是直角三角形,即∠BAC=90°时,四边形ABEC是矩形.

2.解:四边形ACBD是矩形.证明如下:如图1-2-36所示.  
∵CD//MN,∴∠2=∠4.∵BD平分∠ABN,∴∠1=∠4,∴∠1=∠2,∴OB=OD(等角对等边).同理可证OB=OC,∴OC=OD.∵O是AB的中点,∴OA=OB,
∴四边形ACBD是平行四边形(对角线互相平分的四边形是平行四边形).
又∵BC平分∠ABM,∴∠3=1/2∠ABM.∵BD平分∠ABN,∴∠1= 1/2∠ABN.
∵∠ABM+∠ABN=180°,∴2∠3+2∠1=180°,∴∠3+∠1=90°,即∠CBD=90°.
∴平行四边形ACBD是矩形(有一个角是直角的平行四边形是矩形)
3.解:做法如下:如图1-2-37所示,

(1)连接AC,BD;
(2)过A,C两点分别作EF//BD,GH//BD;
(3)同法作FG//AC,EH//AH,与EF,GH交于四个点E,F,G,H,则矩形EFGH即为所求,且S矩形EFGH=2S菱形ABCD.
第18页练习答案
证明:∵四边形ABCD是由两个全等的等边三角形ABD和CBD组成,
∴AB=AD=CD=BC,∴四边形ABD和CBD组成,∴AB=AD=CD=BC,
∴四边形ABCD是菱形.∵M,N分别是BC和AD的中点,∴DN=1/2 AD,BM= 1/2 BC,∴DN=BM.∵BN=DM,
∴四边形BMDN是平行四边形.
∴∠DBN=1/2∠ABD= 1/2×60°=30°,∠DBM=60°,∴∠NBM=∠DBN+∠DBM=30°+60°=90.。

Tags: 数学 初三 九年级 北师大 习题 课后 上册

本文来自网友上传,不代表本网站立场,转载请注明出处:https://www.gxfz.org/84666.html
  • 站长推荐
热门标签