2017年北京市高考数学试卷(理科)(详细答案) 2017年数学高考试题_中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」




主页 > 高中 > 理科综合 > 正文 手机版

2017年北京市高考数学试卷(理科)(详细答案) 2017年数学高考试题

中小学试题|家庭教育题库|辅导习题「中国戏曲学院附属中等戏曲学校」来源: https://www.gxfz.org 2020-02-13 02:53理科综合 191 ℃
2017年数学高考试题

2017年北京市高考数学试卷(理科) 一、选择题.(每小题5分) 1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=( ) A.{x|﹣2<x<﹣1} B.{x|﹣2<x<3} C.{x|﹣1<x<1} D.{x|1<x<3} 2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( ) A.(﹣∞,1) B.(﹣∞,﹣1) C.(1,+∞) D.(﹣1,+∞) 3.(5分)执行如图所示的程序框图,输出的S值为( ) A.2 B. C. D. ,则x+2y的最大值为( ) D.9 4.(5分)若x,y满足A.1 B.3 C.5 5.(5分)已知函数f(x)=3x﹣()x,则f(x)( ) A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数 C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数 6.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ) 第1页(共22页)

A.3 B.2 C.2 D.2 8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是( ) (参考数据:lg3≈0.48) A.1033 B.1053 C.1073 D.1093 二、填空题(每小题5分) 9.(5分)若双曲线x2﹣=1的离心率为,则实数m= . 10.(5分)若等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,则= . 11.(5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为 . 12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(α﹣β)= . 13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为 . 14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、第2页(共22页)

纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3. (1)记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是 . (2)记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是 . 三、解答题 15.(13分)在△ABC中,∠A=60°,c=a. (1)求sinC的值; (2)若a=7,求△ABC的面积. 16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=(1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. ,AB=4. 17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者. 第3页(共22页)

(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率; (2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ); (3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论) 18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点. (1)求抛物线C的方程,并求其焦点坐标和准线方程; (2)求证:A为线段BM的中点. 19.(13分)已知函数f(x)=excosx﹣x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 20.(13分)设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数. (1)若an=n,bn=2n﹣1,求c1,c2,c3的值,并证明{cn}是等差数列; (2)证明:或者对任意正数M,存在正整数m,当n≥m时,在正整数m,使得cm,cm+1,cm+2,…是等差数列. >M;或者存第4页(共22页)

2017年北京市高考数学试卷(理科) 参考答案与试题解析 一、选择题.(每小题5分) 1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=( ) A.{x|﹣2<x<﹣1} B.{x|﹣2<x<3} C.{x|﹣1<x<1} D.{x|1<x<3} 【分析】根据已知中集合A和B,结合集合交集的定义,可得答案. 【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3}, ∴A∩B={x|﹣2<x<﹣1} 故选:A. 【点评】本题考查的知识点集合的交集运算,难度不大,属于基础题. 2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( ) A.(﹣∞,1) B.(﹣∞,﹣1) C.(1,+∞) D.(﹣1,+∞) 【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得,解得a范围. 【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限, ∴,解得a<﹣1. 则实数a的取值范围是(﹣∞,﹣1). 故选:B. 【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题. 3.(5分)执行如图所示的程序框图,输出的S值为( ) 第5页(共22页)

A.2 B. C. D. 【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2, 当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=, 当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=, 当k=3时,不满足进行循环的条件, 故输出结果为:, 故选:C. 【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答. 4.(5分)若x,y满足A.1 B.3 C.5 D.9 ,则x+2y的最大值为( ) 【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可. 【解答】解:x,y满足的可行域如图: ,可得由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由第6页(共22页)

A(3,3), 目标函数的最大值为:3+2×3=9. 故选:D. 【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键. 5.(5分)已知函数f(x)=3x﹣()x,则f(x)( ) A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数 C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数 【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案. 【解答】解:f(x)=3x﹣()x=3x﹣3﹣x, ∴f(﹣x)=3﹣x﹣3x=﹣f(x), 即函数f(x)为奇函数, 又由函数y=3x为增函数,y=()x为减函数, 故函数f(x)=3x﹣()x为增函数, 故选:A. 【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题. 第7页(共22页)

6.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论. 【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0. 反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立. ∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件. 故选:A. 【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题. 7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ) A.3 B.2 C.2 D.2 【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可. 第8页(共22页)

【解答】解:由三视图可得直观图, 再四棱锥P﹣ABCD中, 最长的棱为PA, 即PA==2, = 故选:B. 【点评】本题考查了三视图的问题,关键画出物体的直观图,属于基础题. 8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是( ) (参考数据:lg3≈0.48) A.1033 B.1053 C.1073 D.1093 【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果. 【解答】解:由题意:M≈3361,N≈1080, 根据对数性质有:3=10lg3≈100.48, ∴M≈3361≈(100.48)361≈10173, ∴≈故选:D. 【点评】本题解题关键是将一个给定正数T写成指数形式:T=形式与对数形式的互化,属于简单题. 第9页(共22页) =1093, ,考查指数

二、填空题(每小题5分) 9.(5分)若双曲线x2﹣=1的离心率为,则实数m= 2 . 【分析】利用双曲线的离心率,列出方程求和求解m 即可. 【解答】解:双曲线x2﹣可得:解得m=2. 故答案为:2. 【点评】本题考查双曲线的简单性质,考查计算能力. 10.(5分)若等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,则= 1 . , =1(m>0)的离心率为, 【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果. 【解答】解:等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8, 设等差数列的公差为d,等比数列的公比为q. 可得:8=﹣1+3d,d=3,a2=2; 8=﹣q3,解得q=﹣2,∴b2=2. 可得=1. 故答案为:1. 【点评】本题考查等差数列以及等比数列的通项公式的应用,考查计算能力. 11.(5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为 1 . 【分析】先将圆的极坐标方程化为标准方程,再运用数形结合的方法求出圆上的点到点P的距离的最小值. 第10页(共22页)

【解答】解:设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C,将圆C的极坐标方程化为:x2+y2﹣2x﹣4y+4=0, 再化为标准方程:(x﹣1)2+(y﹣2)2=1; 如图,当A在CP与⊙C的交点Q处时,|AP|最小为: |AP|min=|CP|﹣rC=2﹣1=1, 故答案为:1. 【点评】本题主要考查曲线的极坐标方程和圆外一点到圆上一点的距离的最值,难度不大. 12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(α﹣β)= ﹣ . 【分析】方法一:根据教的对称得到sinα=sinβ=,cosα=﹣cosβ,以及两角差的余弦公式即可求出 方法二:分α在第一象限,或第二象限,根据同角的三角函数的关系以及两角差的余弦公式即可求出 【解答】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称, ∴sinα=sinβ=,cosα=﹣cosβ, ∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1=﹣1=﹣ 方法二:∵sinα=, 当α在第一象限时,cosα=, 第11页(共22页)

∵α,β角的终边关于y轴对称, ∴β在第二象限时,sinβ=sinα=,cosβ=﹣cosα=﹣∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣:∵sinα=, 当α在第二象限时,cosα=﹣∵α,β角的终边关于y轴对称, ∴β在第一象限时,sinβ=sinα=,cosβ=﹣cosα=∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣综上所述cos(α﹣β)=﹣, 故答案为:﹣ 【点评】本题考查了两角差的余弦公式,以及同角的三角函数的关系,需要分类讨论,属于基础题 13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为 ﹣1,﹣2,﹣3 . 【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一 【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题, 则若a>b>c,则a+b≤c”是真命题, 可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一), 故答案为:﹣1,﹣2,﹣3 【点评】本题考查了命题的真假,举例说明即可,属于基础题. 14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3. (1)记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是 第12页(共22页) , ×+×=﹣ , , +×=﹣ ×

Q1 . (2)记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是 p2 . 【分析】(1)若Qi为第i名工人在这一天中加工的零件总数,则Qi=Ai的综坐标+Bi的纵坐标;进而得到答案. (2)若pi为第i名工人在这一天中平均每小时加工的零件数,则pi为AiBi中点与原点连线的斜率;进而得到答案. 【解答】解:(1)若Qi为第i名工人在这一天中加工的零件总数, Q1=A1的纵坐标+B1的纵坐标; Q2=A2的纵坐标+B2的纵坐标, Q3=A3的纵坐标+B3的纵坐标, 由已知中图象可得:Q1,Q2,Q3中最大的是Q1, (2)若pi为第i名工人在这一天中平均每小时加工的零件数, 则pi为AiBi中点与原点连线的斜率, 故p1,p2,p3中最大的是p2 故答案为:Q1,p2 【点评】本题考查的知识点是函数的图象,分析出Qi和pi的几何意义,是解答的关键. 三、解答题 15.(13分)在△ABC中,∠A=60°,c=a. (1)求sinC的值; 第13页(共22页)

(2)若a=7,求△ABC的面积. 【分析】(1)根据正弦定理即可求出答案, (2)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可. 【解答】解:(1)∠A=60°,c=a, 由正弦定理可得sinC=sinA=×(2)a=7,则c=3, ∴C<A, 由(1)可得cosC=, ×. +×=, =, ∴sinB=sin(A+C)=sinAcosC+cosAsinC=∴S△ABC=acsinB=×7×3×=6【点评】本题考查了正弦定理和两角和正弦公式和三角形的面积公式,属于基础题 16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=(1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. ,AB=4. 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面第14页(共22页)

PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,), ),C(2,4,0),B(﹣2,4,0),M(﹣1,2,,设平面PBD的一个法向量为则由,得,取z=. , ,得. . . 取平面PAD的一个法向量为∴cos<>==∴二面角B﹣PD﹣A的大小为60°; (3)解:,平面BDP的一个法向量为. >∴直线MC与平面BDP所成角的正弦值为|cos<第15页(共22页)

|=||=||=. 【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题. 17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者. (1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率; (2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ); (3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论) 【分析】(1)由图求出在50名服药患者中,有15名患者指标y的值小于60,由此能求出从服药的50名患者中随机选出一人,此人指标小于60的概率. 第16页(共22页)

(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和E(ξ). (3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大. 【解答】解:(1)由图知:在50名服药患者中,有15名患者指标y的值小于60, 则从服药的50名患者中随机选出一人,此人指标小于60的概率为: p==. (2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7, 可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2, P(ξ=0)=, P(ξ=1)=P(ξ=2)==, =, ∴ξ的分布列如下: ξ P E(ξ)= 0 1 2 =1. (3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大. 【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题. 第17页(共22页)

18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点. (1)求抛物线C的方程,并求其焦点坐标和准线方程; (2)求证:A为线段BM的中点. 【分析】(1)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程; (2)设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),根据韦达定理得到x1+x2=,x1x2=,根据中点的定义即可证明. 【解答】解:(1)∵y2=2px过点P(1,1), ∴1=2p, 解得p=, ∴y2=x, ∴焦点坐标为(,0),准线为x=﹣, (2)证明:设过点(0,)的直线方程为 y=kx+,M(x1,y1),N(x2,y2), ∴直线OP为y=x,直线ON为:y=x, 由题意知A(x1,x1),B(x1,), 由,可得k2x2+(k﹣1)x+=0, ∴x1+x2=,x1x2= ∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)第18页(共22页)

•2x1=2x1, ∴A为线段BM的中点. 【点评】本题考查了抛物线的简单性质,以及直线和抛物线的关系,灵活利用韦达定理和中点的定义,属于中档题. 19.(13分)已知函数f(x)=excosx﹣x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程; (2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值. 【解答】解:(1)函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1, 可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0, 切点为(0,e0cos0﹣0),即为(0,1), 曲线y=f(x)在点(0,f(0))处的切线方程为y=1; (2)函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1, 令g(x)=ex(cosx﹣sinx)﹣1, 则g(x)的导数为g′(x)=ex(cosx﹣sinx﹣sinx﹣cosx)=﹣2ex•sinx, 当x∈[0,],可得g′(x)=﹣2ex•sinx≤0, ]递减,可得g(x)≤g(0)=0, ]递减, 即有g(x)在[0,则f(x)在[0,第19页(共22页)

即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1; ﹣=﹣. 最小值为f()=ecos【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题. 20.(13分)设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数. (1)若an=n,bn=2n﹣1,求c1,c2,c3的值,并证明{cn}是等差数列; (2)证明:或者对任意正数M,存在正整数m,当n≥m时,在正整数m,使得cm,cm+1,cm+2,…是等差数列. 【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,则cn=b1﹣na1=1﹣n,cn+1﹣cn=﹣1对∀n∈N*均成立; (2)由bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得cm,cm+1,cm+2,…是等差数列;设存在正整数m,使得n≥m,=An+B+对任意正整数M,>M;或者存>M,分类讨论,采用放缩法即可求得因此对任>M. 意正数M,存在正整数m,使得当n≥m时,【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5, 当n=1时,c1=max{b1﹣a1}=max{0}=0, 当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1, 当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2, 下面证明:对∀n∈N*,且n≥2,都有cn=b1﹣na1, 当n∈N*,且2≤k≤n时, 则(bk﹣nak)﹣(b1﹣na1), =[(2k﹣1)﹣nk]﹣1+n, 第20页(共22页)

=(2k﹣2)﹣n(k﹣1), =(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0, 则(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak, 因此,对∀n∈N*,且n≥2,cn=b1﹣na1=1﹣n, cn+1﹣cn=﹣1, ∴c2﹣c1=﹣1, ∴cn+1﹣cn=﹣1对∀n∈N*均成立, ∴数列{cn}是等差数列; (2)证明:设数列{an}和{bn}的公差分别为d1,d2,下面考虑的cn取值, 由b1﹣a1n,b2﹣a2n,…,bn﹣ann, 考虑其中任意bi﹣ain,(i∈N*,且1≤i≤n), 则bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n, =(b1﹣a1n)+(i﹣1)(d2﹣d1×n), 下面分d1=0,d1>0,d1<0三种情况进行讨论, ①若d1=0,则bi﹣ain═(b1﹣a1n)+(i﹣1)d2, 当若d2≤0,则(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)d2≤0, 则对于给定的正整数n而言,cn=b1﹣a1n,此时cn+1﹣cn=﹣a1, ∴数列{cn}是等差数列; 当d2>0,(bi﹣ain)﹣(bn﹣ann)=(i﹣n)d2>0, 则对于给定的正整数n而言,cn=bn﹣ann=bn﹣a1n, 此时cn+1﹣cn=d2﹣a1, ∴数列{cn}是等差数列; 此时取m=1,则c1,c2,…,是等差数列,命题成立; ②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数, 故必存在m∈N*,使得n≥m时,﹣d1n+d2<0, 则当n≥m时,(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n), 因此当n≥m时,cn=b1﹣a1n, 此时cn+1﹣cn=﹣a1,故数列{cn}从第m项开始为等差数列,命题成立; 第21页(共22页)

③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数, 故必存在s∈N*,使得n≥s时,﹣d1n+d2>0, 则当n≥s时,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n), 因此,当n≥s时,cn=bn﹣ann, 此时==﹣an+, , =﹣d2n+(d1﹣a1+d2)+令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C, 下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,+1],[x]表示不大于x的最大整数, +1]+B>A•+B=M, >M, 若C≥0,取m=[当n≥m时,≥An+B≥Am+B=A[此时命题成立; 若C<0,取m=[当n≥m时, ≥An+B+≥Am+B+C>A•此时命题成立, 因此对任意正数M,存在正整数m,使得当n≥m时,综合以上三种情况,命题得证. 【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题. 加油 >M; +B+C≥M﹣C﹣B+B+C=M, ]+1, 第22页(共22页)

2017年数学高考试题

中小学生守则, 小学二年级, 小学体育教案, 小学生英语, 中小学教师资格证考试网, 小学生必背古诗, 小学科学, 小学生谚语大全, 小学必背古诗, 崇文小学, 小学数学教学论文, 小学英语课堂游戏, 上地实验小学, 小学一年级看图写话, 西安小学, 闵行区实验小学, 景山小学, 东风小学, 小学语文教学视频, 小学三年级奥数题, 人教版小学数学, 小学生古诗大全, 小学英语游戏, 灯市口小学, 首都师范大学附属小学, 小学国旗下讲话, 昌邑小学, 英语小学, 中小学教师资格证网, 小学生读书卡, 小学英语质量分析, 中小学学习网, 小学语文教学随笔, 北师大实验小学, 中小学课外辅导机构, 中小学生学籍管理办法, 小学数学三年级上册, 淮阴师范学院第一附属小学, 小学生作文我的妈妈, 小学语文教材教法, 小学语文手抄报, 人教版小学语文课本, 小学生法制教育教案, 小学语文学习网, 小学数学课题研究, 小学德育教育论文, 徐州小学, 小学生手抄报内容, 小学生安全儿歌, 小学校歌歌词, 小学学校工作计划, 小学生女生内衣, 小学学校工作总结, 中小学课程, 洪家楼小学, 中小学教师教育网, 小学生营养餐, 小学语文教育叙事, 中小学生作文网, 小学生报纸, 小学科学教学论文, 逸仙小学, 小学叙事作文, 大马路小学, 小学数学教研组工作计划, 祥瑞园小学, 万全道小学, 小学生四年级手抄报, 小学综合英语, 小学语文研修总结, 小学班主任教育故事, 小学教研计划, 龙园意境小学, 小学英语说课稿模板, 小学班干部职责, 中小学教学资源网, 小学四年级数学下册, 小学教育改革, 小学生科技知识, 小学生作文精选, 小学教师心得体会, 小学二年级音乐教案, 湖北小学, 小学一年级语文课件, 小学教研活动计划, 石坦巷小学, 海淀实验小学招生简章, 小学语文教学网, 小学生教育案例, 小学数学练习机, 小学校本教研计划, 黄冈中学, 徐汇中学, 广雅中学, 杭州高级中学, 重庆育才中学, 耀华中学, 清华中学, 市西中学, 青岛超银中学, 仲元中学, 新竹园中学, 宜川中学, 慈溪中学, 四川省绵阳中学, 怀宁中学, 汕头金山中学, 福州华伦中学, 双流中学, 兼善中学, 中山市第一中学, 简阳中学, 长郡梅溪湖中学, 邯郸市第一中学, 珠海市第一中学, 厦门实验中学, 福州文博中学, 西乡中学, 新昌中学, 北海中学, 佛山石门中学, 六安毛坦厂中学, 铜梁中学, 中学物理, 求实中学, 北京陈经纶中学, 榆林中学, 姜山中学, 福田外国语高级中学, 东莞市第六高级中学, 盱眙中学, 深圳育才中学, 福州三牧中学, 上海市七宝中学, 嘉兴高级中学, 海河中学, 东莞中学排名, 惠阳高级中学, 惠州市华罗庚中学, 湛江市第二中学, 武汉市第十一中学, 储能中学, 马鞍山红星中学, 台州书生中学, 赣县中学, 观澜中学, 台州市第一中学, 田家炳实验中学, 海陵中学, 北镇中学, 职业中学, 綦江中学, 上海建平实验中学, 梅县东山中学, 龙港高级中学, 北京市第十五中学, 贵阳市清华中学, 眉山中学, 宜昌市夷陵中学, 连州中学, 南京师范大学附属扬子中学, 黄州中学, 宝鸡市第一中学, 开侨中学, 凯慧中学, 太原市实验中学, 垫江中学, 广州市南武中学, 四川省大竹中学, 大足城南中学, 安仁中学, 厚街中学, 宁陵中学事件, 金堡中学, 潮州高级中学, 开平市金山中学, 金华中学, 横县中学, 海珠中学, 三溪中学, 石家庄市第四十中学, 建湖高级中学, 苹果园中学, 黄河科技学院附属中学, 翠微中学, 北京农业大学附属中学, 深圳中学高中部, 名山中学, 青岛市实验初级中学, 项城市第一高级中学, 永宁中学, 上海市风华中学, 良乡中学, 常州市正衡中学, 楚雄紫溪中学, 帝光中学, 安徽省天城中学, 上海中学官网, 东莞可园中学, 台州市路桥中学, 江苏省清浦中学, 中学生自我评价, 江城中学, 翁源中学, 遂宁中学外国语实验学校, 东方红中学, 凤城中学, 厦门市华侨中学, 沈阳市第九中学, 天柱民族中学, 峪宏中学, 商州区中学, 达县职业高级中学, 扶绥中学, 文山大同中学, 兴安中学, 成都金牛中学, 台州第一中学, 沧州市第十四中学, 北流中学, 建国中学, 潍坊锦程中学, 太仓市第二中学, 长春二实验中学, 阳西县第一中学, 中学数理化, 中学学科网政治, 一七一中学, 平潭城关中学, 本溪市第二高级中学, 新建路中学, 富阳中学国际部, 眉山车城中学, 洛阳市第二中学, 临海市高级职业中学, 棠湖中学外语实验学校, 容县杨梅中学, 罗城中学, 三明列东中学, 123中学, 深圳布吉高级中学, 怀来县沙城中学, 中学语文资源站, 陆川县中学, 永嘉县实验中学, 丰县华山中学, 潍坊第一中学, 合肥市寿春中学, 四会华侨中学, 衡水中学吧, 沭阳县修远中学, 西双版纳州民族中学, 南靖县实验中学, 中学校园, 徐州中学, 易县中学, 北京十二中学, 株洲景弘中学, 揭西县河婆中学, 晋中学院贴吧, 葵潭中学, 二十二中学, 龙坡中学, 无锡侨谊中学, 西山区第一中学, 凤翔县西街中学, 罗山高级中学, 紫金县尔崧中学, 玉兰中学, 华埠中学, 恩平黄冈实验中学, 射阳县陈洋中学, 初中满分作文, 初中物理公式, 初中生物, 初中手抄报, 初中语文基础知识, 初中语文教学反思, 初中物理网, 衡水五中初中部, 初中班级口号, 初中英语文章, 初中家教, 奎文实验初中, 初中数学总复习, 初中英语被动语态, 初中一年级英语, 作文网初中, 初中历史复习提纲, 初中英语培训, 初中生作文题目, 初中文言文虚词, 初中军训心得体会, 初中体育教学反思, 初中语文教学计划, 初中学历上大专, 初中化学方程式汇总, 初中物理新课程标准, 初中日记100字, 初中班会课教案, 高中物理, 高中作文, 高中数学课本, 高中随笔, 高中数学必修五, 高中生周记, 初中升高中, 高中数学题库, 高中英语试卷, 高中数学辅导, 复仇高中, 高中物理学史, 高中班训, 湖北省高中课改网, 无锡市北高中, 梦想高中, 高中体育课教案, 广西玉林高中, 扶沟高中, 普及高中教育, 漯河实验高中, 高中英语手抄报, 高中生活作文, 高中数学公式总结, 高中数学说课视频, 慈溪高中,

Tags:

本文来自网友上传,不代表本网站立场,转载请注明出处:https://www.gxfz.org/935298.html
  • 站长推荐
热门标签